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Mendelian randomization reveals plasminogen as a
common therapeutic target for myocardial infarction
and atrial fibrillation
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Abstract
Introduction: Plasma proteins play essential roles in myocardial infarction (MI) and atrial
fibrillation (AF); however, it remains unknown whether the two disorders share causal plasma
proteins.
Methods: The present study utilizes cis-protein quantitative trait loci (cis-pQTLs) for 4,719
plasma proteins to assess their causality on MI and AF.
Results: Two-sample Mendelian randomization (MR) identifies 21 and 9 plasma proteins for
MI and AF, respectively (FDR P<0.05), with plasminogen (PLG) being a commonly protective
factor against both diseases. Multi-trait MR suggests that PLG is also protective against coronary
atherosclerosis. PheWAS analysis identifies associations of six cis-pQTLs with both MI and AF,
e., rs11751347 (PLQ), rs11591147 (PCSK9), rs77347777 (ITIH4), rs936228 (ULK3), rs2261033
(AIF1V), and rs2711897 (BDH2). Furthermore, interactions exist among the causal plasma
proteins, with PLG directly interacting with multiple others. Drug-gene databases suggest that PLG
activators, such as Urokinase, Reteplase, Streptokinase, Alteplase, Anistreplase, Tenecteplase,
Desmoteplase, and Defibrotide sodium may serve as common therapeutic drugs for Ml and AF.
Conclusion: Our study provides a causal inference of human plasma proteins in Ml and AF.
Several of the identified proteins and single nucleotide polymorphisms (sNPs) exert pleiotropic
effects on other cardiometabolic phenotypes, indicating their crucial roles in the pathology of
cardiovascular disease (CVD). Our study provides new insights into the shared causality and
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drugs for Ml and AF.
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Introduction

Myocardial infarction (MI) is caused by lack of blood
flow to a portion of the heart muscle, which results in
symptoms such as chest pain, shortness of breath and
arrhythmias.! Notably, stress, high cholesterol levels,
obesity, diabetes, smoking, and menopause are associated
with an increased risk of MI1.2 Medications such as aspirin
and statins have been shown to reduce the risk of MI.**
Atrial fibrillation (AF) is defined as an irregular and often
rapid heart rhythm, which can increase the risk of blood
clots forming in the heart. AF increases the risk of both
MI and stroke.>® In the patients with AF, the incidence
of MI is approximately 50% higher than those without
and AF coexists in 6-21% of patients with acute ML.”?
Additionally, patients with a history of hypertension are
at an increased risk of developing AE' Observational
studies have shown associations between MI and AF ,
with several proposed mechanisms. For instance, MI can

lead to left atrial dilation, left ventricular remodeling,
electrical remodeling, neurohumoral modulation, and
loss of cardiomyocytes due to apoptosis and fibrosis.
conversely, AF can result in thrombus formation and
coronary artery embolism, as well as a mismatch between
oxygen supply and demand caused by the arrhythmias.>
7 1L 12 Additionally, inflammation has been proposed as
a common risk factor, with inflammatory mediators such
as TNE, IL-2, and TGF-B1 playing critical roles.” While
comorbidity between MI and AF has been established,
their molecular connections—particularly shared causal
molecules—require further elucidation.

Circulating proteins in the plasma, which include simple
proteins, glycoproteins, lipoproteins, and other conjugated
proteins, play essential roles in human physiology
and pathology. They contribute to various functions,
including the maintenance of colloid osmotic pressure,
blood clotting, immune response, hormone transport and
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interorgan communication. Measurement these proteins
provides insights into metabolic and inflammatory status,
contributing to an overall assessment of human health.”
Nowadays, many drugs are designed to specifically target
plasma proteins.™

With the rapid advancement of genome-wide association
studies (GWAS), the Mendelian randomization (MR)
analytical strategy has become widely utilized to evaluate
causal relationships between risk factors (exposure) and
diseases (outcome) through genetic variants."” Utilizing
protein quantitative trait loci (pQTLs) as instruments,
MR analysis has identified plasma proteins that are causal
for complex diseases, including cardiovascular disease
(CVD),'"® such as stroke,'” heart failure,**' coronary
atherosclerosis,”»” and hypothyroidism.** Zheng et al
(2020) estimated the effects of 1,002 proteins on MI based
on 738 cis-pQTLs and identified putatively causal effects
of 90 cis-pQTLs on MI.* Ning et al (2023) identified
30 proteins as potential drug targets for AF using
1,949 proteins, each represented by a single nucleotide
polymorphisms (SNP) as instruments.?

In the present study, we applied MR analytics to a large
genetic study on pQTLs in the human plasma proteome
from deCODE, encompassing 4,719 proteins, along with
two most recent GWAS on MI and AF.*** We identified
causal plasma proteins for MI and AF and analyzed
their functions and pleiotropic effects on other CVD.
We localized their shared causal plasma proteins and
subsequently identified common drug candidates for the
treatment of both diseases.

Materials and Methods

Data resources

All input datasets consisted of publicly available GWAS
summary statistics conducted within the European
ancestry group. For the MR analysis, exposure data
was obtained from deCODE (https://www.decode.
com/summarydata/), which included pQTLs for 4,719
plasma proteins in a cohort of 35,559 Icelanders. These
proteins were measured using 4,907 aptamers via the
Somascan v4 array. Outcome information for MI and
AF was sourced from the Open GWAS project (https://
gwas.mrcieu.ac.uk/). Specifically, the GWAS summary
results for MI included association tests for 10,290,368
SNPs conducted between 14,825 cases and 2,680 controls
(https://www.ebi.ac.uk/gwas/studies/ GCST011365). The
GWAS summary statistics for AF included association
tests for 12,095,506 variants, involving 55,114 cases and
482,295 controls (https://gwas.mrcieu.ac.uk/datasets/ebi-
a-GCST006061/).

Mendelian randomization analysis

The “TwoSampleMR” R package (version 0.5.6) was
utilized to conduct the MR analysis, employing only
summary statistics from the GWAS.* The exposure and
outcome data were loaded and harmonized using the

harmonise_data function. To ensure the independence
of the instruments for the exposure, we employed the
clump_data function to clump SNPs, referencing the
European samples from the 1000 Genomes Project.” Five
MR methods, namely inverse variance weighted IVW),*
MR Egger, weighted median,’* Simple mode, Weighted
mode,*>* and Wald ratio were used to analyze the causal
association of cis-pQTLs with MI and AE FDR-corrected
P values were calculated, with significance determined at
an FDR threshold of <0.05.*

Enrichment analysis

Functional and pathway enrichment analyses based on
Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomics (KEGG) was conducted using the
DAVID bioinformatics tool (https://david.ncifcrf.gov/).
In this analysis, the proteins identified in the MR analysis
were utilized as input data. P value <0.05 was considered
significant for GO and KEGG pathway enrichment.

Multitrait mendelian randomization analysis
Multi-trait MR was conducted using cis-pQTLs as the
exposure and GWAS summary statistics for thirteen
cardiovascular diseases as the outcomes (Supplementary
file, Table S1).? An association was deemed significant if
it passing the threshold of FDR<0.05. The results were
visualized as a dotplot using the ggplot2 package in R.

phenome-wide association studies (Phe WAS)
PheWAS analysis was conducted using Open Targets
Genetics (https://genetics.opentargets.org) to investigate
associations between SNPs and CVDs in a large numbers
of individuals. For each of the thirty SNPs identified as
causal for MI and AF in our MR analysis, we conducted
independent PheWAS. statistical significance was
established at a threshold of P<0.005. A manhattan plot
was utilized to visualize the results.

Open Targets Genetics is an open-access web resource
that explores associations between GWAS-associated loci,
variants, traits, and causal genes.

Drug target analysis

To derive potential drugs for each plasma protein candidate
identified in our MR findings, we referenced an updated
list from the Drug Gene Interaction Database (DGIdb).*
We conducted a manual search for drug targets through
an inquiry into https://dgidb.org/ (DGIdb) website for
each candidate target.

Protein-protein interaction (PPI) network analysis

To investigate the relationships between the causal plasma
proteins for MI and AF, we conducted a PPI network
analysis using the String software (http://string-db.org/).*
This analysis searched the PPI records in the String
database and subsequently constructed a PPI network for
all identified causal proteins.
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Results

Causal plasma proteins to MI and AF

We performed two-sample MR using various methods
to identify causal plasma proteins associated with MI
and AFE This analysis utilized the pQTL dataset of the
human plasma proteome from deCODE, along with data
from two large GWAS on MI and AE*? The deCODE
pQTL dataset comprises 28,191 associations between
DNA genotypes and the levels of 4,719 plasma proteins.
This includes 7,572 SNPs located near the protein-
coding genes, classified as cis-pQTL. Since cis-pQTLs
typically exert greater effects on protein abundance than
trans-pQTLs,”* we concentrated on cis-pQTLs for the
subsequent analysis. The GWAS studies on MI and AFE,
each examined over 10 million SNPs in disease cohorts
comprising 14,000 MI cases and 55,000 AF cases, making
them the largest genetic studies of their kind. All these
studies were conducted on populations of European
ancestry, resulting in large and homogenous datasets for
the subsequent discovery.

Overall, our MR analysis identified 21 proteins
associated with MI (Inverse variance weighted or Wald
Ratio MR, FDR<0.05), including 10 proteins whose
elevated expression would cause MI (interleukin-1
receptor antagonist (IL-1RN), apolipoprotein B (APOB),
proprotein convertase subtilisin/kexin type 9 (PCSK9),
unc-51 like kinase 3 (ULK3), complement C2 (C2), zinc
binding alcohol dehydrogenase domain containing 2
(ZADH2), coagulation factor II (F2), phosphodiesterase
5A (PDE5A), allograft inflammatory factor 1 (AIFI),
and cytochrome B5 reductase 2 (CYB5R2)) and 11

Outcome Protein Methods nSNPs Beta

proteins whose expression would exert protective effects
(pleckstrin homology domain containing A1 (PLEKHA1),
angiotensinogen (AGT), activating transcription factor
6 beta (ATF6B), ADP-ribosylation factor-like protein
3 (ARL3), protein C (PROC), plasminogen (PLG),
fibronectin 1 (EN1), inter-alpha-trypsin inhibitor heavy
chain4 (ITIH4),transgelin2 (TAGLN2),asialoglycoprotein
receptor 1 (ASGR1), and angiopoietin-like 4 (ANGPTL4))
(Figure 1, Supplementary file, Table S2). Notably, PCSK9
on Chromosome 1, a recognized biomarker for CVD, was
identified as causal through two SNPs: rs11591147 and
rs472495 (OR:1.68, FDR =5.28 x 10**). The plasma protein
with the most significant causal effect on MI was IL-1RN
(OR:2.70, 95%CI:1.36-5.35, FDR=3.51 x 102).

Concurrently, we identified 9 causal plasma proteins
associated with AF (Wald ratio MR, FDR < 0.05), of which
6 proteins were found to increase the risk of AF (member
RAS oncogene family (RAB1A), spondin 1 (SPONI),
cofilin-2 (CFL2), hydroxyacylglutathione hydrolase
(HAGH), annexin A4 (ANXA4), and 3-hydroxybutyrate
dehydrogenase 2 (BDH2)) and three proteins decrease
the AF risks (cluster of differentiation 68 (CD68),
phosphofructokinase, muscle (PFKM), and PLG)
(Figure 1, Supplementary file, Table S3). The proteins with
the most significant positive and negative effects on AF
were RAB1A (OR:3.09, 95%C1:2.40-3.98, FDR=3.42 x 10
15) and CD68 (OR:0.59, 95%CI:0.45-0.76, FDR=1.11x 10"
%), respectively.

Taken together, our MR analyses identified 29 plasma
proteins as causal, with PLG being implicated in both
MI (OR:0.79, 95% CI:0.74-0.85, FDR=5.47x107) and

Odds ratio(95%Cl) FDR

MI IL1RN Wald ratio 1 0.994 2.703(1.365,5.349) 3.51x102
MI APOB Wald ratio 1 0.869 — — 2.385(1.518,3.748) 2.45x103
MI PCSK9 Ivw 2 0521 o ] 1.684(1.358,2.090) 5.28x10-+4
Mi ULK3 Waldratio 1 0.323 ——— 1.381(1.149,1.606) 3.83x102
Mi c2 Waldratio 1 0.291 —— 1.337(1.137,1.573)  2.83x10-2
MI ZADH2 Wald ratio 1 0.279 -—— 1.322(1.125,1.553) 4.38x102
MI F2 Wald ratio 1  0.260 - 1.297(1.134,1.482)  1.36x10-2
MI PDE5SA Waldratio 1 0.244 L] 1.276(1.117,1.458) 2.72x102
Mi AIF1 Wald ratio 1  0.208 - 1.231(1.090,1.392)  4.66x102
MI CYB5R2 Waldrato 1 0.189 - 1.208(1.088,1.341) 2.96x102
Mi PLEKHA1 Waldratio 1 -0.097 o 0.907(0.860,0.956) 2.62x102
MI AGT Wald ratio 1 -0.132 L 0.876(0.810,0.947) 4.66x102
MI ATF6B Wald ratio 1 -0.142 L] 0.866(0.796,0.943) 4.66x102
MI ARL3 Wald ratio 1 -0.199 . 0.819(0.742,0.903) 9.04x10-3
Mi PROC Wald ratio 1 -0.203 - 0.816(0.735,0.906) 1.25x102
MI PLG Wald ratio 1 -0.232 h 0.792(0.735,0.853) 5.47x10-7
Mi FN1 Wald ratio 1 -0.241 o 0.785(0.715,0.862) 1.51x10+
MI ITIH4 Wald rato 1 -0.247 L 0.780(0.690,0.882) 9.06x10-3
Mi TAGLN2 Waldratio 1 -0.377 um 0.685(0.583,0.806) 9.72x10+
MI ASGR1 Wald ratio 1 -0.421 L] 0.655(0.534,0.804) 8.11x10-2
MI ANGPTL4 Waldratio 1 -0.448 L] 0.638(0.529,0.769) 5.28x10+
AF RAB1A Wald ratio 1 1.127 — — 3.089(2.396,3.981) 3.42x10-15
AF SPON1  Waldrato 1 0.544 —— 1.723(1.264,2.350) 7.18x103
AF CFL2 Wald ratio 1 0.413 - 1.512(1.336,1.711)  1.91x10%
AF HAGH Wald ratio 1 0.346 —— 1.413(1.182,1.689) 2.27x102
AF ANXA4  Waldratio 1 0.257 i 1.294(1.218,1.375) 3.86x10-14
AF BDH2 Waldratio 1 0129 wn 1.138(1.059,1.222) 4.56x102
AF PLG Wald ratio 1 -0.144 o 0.865(0.806,0.928) 1.11x102
AF PFKM Wald ratio 1 -0.171 0.842(0.767,0.925) 4.56x102
AF CD68 Waldratio 1 -0.530 | mjm 0.588(0.453,0.762) 1.11x102
1 3 4 5
OR

Figure 1. Mendelian randomization analysis of plasma proteins (cis-pQTLs) for Ml and AF. The forest plot displays significant causal effects of plasma proteins on
Ml and AF. The green lines denotes the averaged odds ratio and the error bars indicate the 95% confidence interval
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AF (OR:0.86, 95%CI:0.81-0.93, FDR=1.11x10?). These
results suggest that a decrease in the plasma level of PLG
may increased the risks for both MI and AE

Functional enrichments to infer biological mechanisms
These potentially causal plasma proteins may reflect
essential biological mechanisms underlying the diseases.
To gain deeper insights, we conducted a functional
enrichment analysis. For MI, the most significantly
enriched terms included the acute-phase response, which
was represented by four proteins (IL-1RN, FNI1, F2, and
ITIH4) (P=9.02x10°), blood microparticle which was
represented by six proteins (PLG, EN1, F2, ITIH4, AGT,
and ANGPTL4) (P=1.74x107), extracellular region which
was represented by twelve proteins (PLG, ASGR1, FN1, F2,
APOB, TAGLN2, PROC, ITTH4, AGT, PCSK9, ANGPTL4,
and C2) (P=4.91x107), serine-type endopeptidase activity
which was represented by four proteins (PLG, F2, PROC,
PCSK9, and C2) (P=3.62x107), and complement and
coagulation cascades which were represented by four
proteins (PLG, F2, PROC, and C2) (P=2.95x10*) (Figure
2, Supplementary file, Table S4). For AF, the most significant
enrichments were found in muscle cell cellular homeostasis
(P=4.85%x10°) and extracellular exosome (P=0.0065)
(Figure 2, Supplementary file, Table S4).

Protein-protein interaction among the causal plasma
proteins

We constructed a PPI network for 29 causal plasma proteins
associated with MI or AF using STRING (http://string-db.
org/) at a medium confidence level (0.4) (Figure 3). CD68,
which is protective against AF, directly interacted with FN1
(protective against MI), AIF1 (causal to MI), and IL-1RN
(causal to MI). CFL2, causal to AF interacted directly with
TAGLN2 (causal to MI). PLG, protective against both MI
and AF primarily interacted with MI related proteins.
k-means clustering was employed to identify sub-networks

(M)

with similar topological and functional properties among
the proteins, resulting in three distinct clusters. Cluster 1
included PLG and eleven other causal proteins, with KEGG
pathway analysis revealing enrichment for cholesterol
metabolism (P=0.001) (Supplementary file, Table S5).
No pathway enrichment was identified for the other two
clusters.

Multi-trait MR identified causal proteins for multiple
cardiometabolic phenotypes

Cardiovascular and metabolic diseases share common
risk factors. To determine whether the 29 causal plasma
proteins exhibit pleiotropy for other cardiometabolic
phenotypes, we conducted a multi-trait MR analysis.
We gathered GWAS summary statistics for thirteen
additional  cardiometabolic  phenotypes,  including
coronary atherosclerosis, hypothyroidism, stroke, heart
failure, angina, abdominal aortic aneurysm, thoracic
aortic aneurysm, peripheral artery disease, chronic kidney
disease, type 2 diabetes, obesity, systolic blood pressure,
and diastolic blood pressure (Figure 4, Supplementary file,
Table S1). Interestingly, PLG, ITIH4, FN1, and ANGPTL4,
all protective against M1, were also inferred to be protective
against coronary atherosclerosis. Conversely, PCSKO,
which is causal to MI, was similarly inferred to be causal for
coronary atherosclerosis. The consistent directions of effect
underscore the significant roles of these plasma proteins.
Additional causal relationships identified included C2
for hypothyroidism and IL-1RN for abdominal aortic
aneurysm (Figure 4). Notably, striking causal relationships
between systolic blood pressure and eleven causal plasma
proteins associated with AF and MI are also evident in
Figure 4.

PheWAS identified pleiotropic effects of the SNPs of MI

and AF
We also examined the pleiotropic effect of the SNPs
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Figure 2. GO enrichment and KEGG pathway analysis for causal plasma proteins for Ml and AF
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associated with MI or AF on other cardiovascular
diseases (Figure 5, Supplementary file, Table S6). The
most significant association was observed between
rs936228 (ULK3) and hypertension (P=1x107"). Most

MI-associated SNPs were also linked to coronary artery
disease and hypertension. Notably, six SNPs, namely
rs11591147 (PCSK9), rs77347777 (ITIH4), rs936228
(ULK3), rs2261033 (AIF1V), rs11751347 (PLG), and
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rs2711897 (BDH2) were found to be associated with both
MI and AF.

Candidate drug targets for MI and AF

With the elucidation of the causality of plasma proteins
for MI and AE, we queried the Drug Gene Interaction
Database (DGIdb)* for potential drug candidates that
could correct abnormal levels of the causal proteins
(Table 1, Supplementary file, Table S7). Among the
27 drugs targeting PLG, eight activators (Urokinase,
Reteplase,  Streptokinase,  Alteplase,  Anistreplase,
Tenecteplase, Desmoteplase, and Defibrotide sodium)
were particularly noteworthy, as low PLG levels were
inferred to be causal for both MI and AF. Likewise, four
PCSK9 inhibitors (alirocumab, bococizumab, evolucumab,
and RG-7652), along with a ULK3 inhibitor (Hesperadin),
a PROC activator (Menadione), and ten PDE5A inhibitors
(Udenafil, Dipyridamole, Tadalafil, Vardenafil, Sildenafil,
Pentoxifylline, ~Vardenafil hydrochloride, Avanafil,
Sildenafil citrate, and Theophylline) were identified as
potential drugs to correct the elevated expression of these
proteins. Other listed drugs require further assessments, as
their interaction types or drug effects were not provided.

Discussion

In the present study, we utilized cis-pQTLs for human
plasma proteins and GWAS summary statistics for MI and
AF to performed two-sample MR analyses, inferring the
causality of plasma proteins in relation to these diseases.
We identified a total of 21 plasma proteins associated with
MI, 9 associated with AF, and one protein, PLG, that is

commonly protective against both diseases. While five of
these plasma proteins have been reported in previous MR
studies (Figure 6),2% the remaining 16 proteins for MI
and 4 proteins for AF are novel findings, highlighting the
discovery potential of a larger cis-pQTL dataset.

We performed a PPI analysis for the causal proteins
identified in this study (Figure 3). Previous studies have
demonstrated that genes associated with similar disorders
or phenotypes tend to encode proteins that interact with
one another through PPIs.””** Thus, this analysis aims to
enhance our understanding of the relationship between
MI and AF and their complex biology.*® While many
plasma proteins associated with MI and AF interacted with
each other, nearly half did not have direct connections,
and some were identified as orphan proteins within our
network. Further investigations are required to uncover
potential links through mediating proteins.

PLG is the common plasma protein identified in our
analysis for both MI and AFE It plays a crucial role in
the fibrinolytic process and regulates the migration of
immune cells to site of inflammation, thereby playing a
prominent role in cardiovascular pathology. to the best
of our knowledge, its protective effect against the risk of
MI has been attributed to its association with stem cell-
mediated cardiac repair; however, its role in AF has not
yet been reported.”

It is worth mention that nine plasma proteins associated
with MI also displayed causality for systolic blood pressure
in our multi-trait MR analysis. Previous studies have
identified hypertension as a risk factor for MI, coronary
heart disease, and stroke, with evidence showing that
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Mi AF

Figure 6. Comparison of MI and AF causal blood proteins found in the present study with previous studies

Table 1. Candidate drug targets for Ml and AF from Drug-Gene Interaction Database (DGldb)

Disease  Proteins Interaction types Drug
Jam— UROKINASE, RETEPLASE, STREPTOKINASE, ALTEPLASE, ANISTREPLASE, TENECTEPLASE, DESMOTEPLASE,
clivato DEFIBROTIDE SODIUM
AF and PLG Inhibitor TRANEXAMIC ACID,APROTININ, AMINOCAPROIC ACID
Ml
RANOLAZINE, GARLIC, GENISTEIN, NYSTATIN, AMEDIPLASE, INOSITOL, MELAGATRAN, CHEMBL35482,
Not provided NORETHINDRONE, FIBRINOLYSIN, OXYMETHOLONE, BORTEZOMIB, HUMAN GROWTH HORMONE,
LEPIRUDIN, RADIOSUMIN B, COUMARIN, PREDNISOLONE, DANAZOL,
Cleavage OCRIPLASMIN
FN1
Not provided L19IL2, LT9TNFA, L19SIP 1311
Inhibitor ALIROCUMAB, BOCOCIZUMAB, EVOLOCUMAB, RG-7652
PCSK9
Not provided FROVOCIMAB, LOMITAPIDE
EPIGALOCATECHIN GALLATE, QUERCETIN, ATORVASTATIN, DEXAMETHASONE, IRBESARTAN, VITAMINE,
APOB Not provided ALCOHOL, MIPOMERSEN, NEVIRAPINE, LOVASTATIN, HEPARIN, LOMITAPIDE, HYDROCORTISONE,
CHOLESTYRAMINE, WARFARIN, PRAVASTATIN, TRIFLUOPERAZINE, FENOFIBRATE
Activator MENADIONE
PROC . WARFARIN, PROGESTERONE, PHENPROCOUMON, AVATROMBOPAG, ANCROD, LUSUTROMBOPAG,
Not provided
ESTRADIOL
Activator MENADIONE
Inhibitor LEPIRUDIN,ARGATROBAN, XIMELAGATRAN, DESIRUDIN, MELAGATRAN, DABIGATRAN, DABIGATRAN
Ml 2 ETEXILATE MESYLATE, BIVALIRUDIN
AVATROMBOPAG, APRAMIDE A, LUSUTROMBOPAG, PEGMUSIRUDIN, SILIBININ, QUERCETIN, ENOXAPARIN,
Not provided HEPARIN, CIANIDANOL, AZD-8165, BORTEZOMIB, ANISINDIONE, ODIPARCIL, CYANIN, TAMOXIFEN,
CYANIDIN, EPICATECHIN, ATECEGATRAN METOXIL, CHEMBL586628, CHEMBL1083499
Inhibitor UDENAFIL, DIPYRIDAMOLE, TADALAFIL, VARDENAFIL, SILDENAFIL, PENTOXIFYLLINE, VARDENAFIL
PDESA ° HYDROCHLORIDE, AVANAFIL, SILDENAFIL CITRATE, THEOPHYLLINE
Not provided RHUCIN, EXISULIND, ICARIIN, ROLIPRAM,CP 461, CHEMBL460293, LORNEIC ACID A, PAPAVERINE, ENALAPRIL
CYB5R2 Not provided RASBURICASE, PRIMAQUINE, METOCLOPRAMIDE
ILTRN Not provided METHOTREXATE, HALOPERIDOL, DIACEREIN
Inhibitor HESPERADIN
ULK3
Not provided ~ IMATINIB
. ATENOLOL, ADRIAMYCIN, ENALAPRIL, AMLODIPINE, HYDROCORTISONE, CHLORTHALIDONE, ASPIRIN,
AGT Not provided

LISINOPRIL, CYT006-ANGQB, QUINAPRIL, IRBESARTAN, MESTRANOL, BENAZEPRIL, IMIDAPRIL

MI, myocardial infarction; AF, atrial fibrillation; PLG, plasminogen; FN1, fibronectin 1; PCSK9, proprotein convertase subtilisin/kexin type 9; APOB, apolipoprotein
B; PROC, protein C; F2, coagulation factor Il; PDE5A, phosphodiesterase 5A; CYB5R2, cytochrome B5 reductase 2; ILTRN, interleukin-1 receptor antagonist;
ULK3, unc-51 like kinase 3; AGT, angiotensinogen

controlling hypertension can reduce the incidence of fatal
MI and stroke.” Additionally, IL-1RN, a member of the
interleukin 1 cytokine family, was inferred to be causal
for both MI and abdominal aortic aneurysm in our study.
IL-1RN is linked to classic pro-inflammatory cytokine

and plays a pivotal role in the innate immune response.*
A recent study indicated that IL-1 blockade is associated
with alower risk of CVDs in patients with prior acute MI.*
Another study suggested that inhibiting interleukin-1
could be a potential strategy to protect against abdominal
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aortic aneurysm in hypertensive patients.”” Our results
align with these findings, highlighting the need for further
investigation into the role of IL-1RN. Additionally, our
analysis identified PCSK9 as causal for MI, with PCSK9
inhibitors such as Evolocumab, Alirocumab, RG.7652, and
Bococizumab emerging as candidate drugs for treating
MI.* This is consistent with previous studies showing
that PCSK9 inhibitors reduced the risk of coronary
atherosclerosis.**

Conclusion

Our study provides causal inference regarding human
plasma proteins in relation to MI and AF. Several of the
identified proteins and SNPs exhibit pleiotropic effects
on other cardiometabolic phenotypes, indicating their
essential roles in CVD pathology. We suggest potential
drugs for these plasma proteins, particularly PLG
activators, such as Urokinase, Reteplase, Streptokinase,
Alteplase, Anistreplase, Tenecteplase, Desmoteplase,
and Defibrotide sodium, as potential therapeutic drugs
for treating comorbid MI and AF. Our study provides a
new hatch toward understanding the shared causality and
drugs for MI and AF.
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