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Cyclophosphamide-induced cardiotoxicity, associated with its toxic metabolite acrolein, is a
significant concern and unresolved issue, especially when cyclophosphamide is administrated
in high doses. However, cardiotoxicity following low-dose cyclophosphamide has been also
documented, especially in post-hematopoietic stem cell transplantation (post-HSCT) settings.

Despite the involvement of multiple signaling pathways in cyclophosphamide-induced
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Introduction

The irreversible cardiotoxicity induced by anti-
neoplastic drugs such as anthracyclines and alkylating
agents is considered a life-threatening health issue in
the clinical setting."? According to the International
Agency for Research in Cancer (IARC) declaration,
cyclophosphamide, an alkylating cytotoxic agent,®
possesses a chemotropic effect used in various types of
cancers, including neuroblastoma, endometrial, breast,
and lung cancers, as well as malignancies such as leukemia,
lymphoma, multiple myeloma, and immune-mediated
conditions, like rheumatoid arthritis (RA), multiple
sclerosis (MS), and life-threatening anti-neutrophil
cytoplasmic antibodies (ANCA)-associated vasculitides,
and even connective tissue diseases such as systemic
lupus erythematosus (SLE) or scleroderma (SSc)."** Due
to immunosuppressive properties, cyclophosphamide is
also utilized in hematopoietic stem cell transplantation
(HSCT) to regulate immune-reactive cells.®” Despite
these advantages, the application of cyclophosphamide
is accompanied by multiple adverse events reported in
several organs primarily cardiac tissue. Arrhythmias,

cardiomyopathy, the exact underlying mechanisms remain to be fully elucidated. This review
outlines the current challenges of cyclophosphamide therapy in HSCT recipients. In addition, the
promising therapeutic approaches by targeting acrolein’s anti-angiogenic effect were thoroughly
discussed to better manage post-HSCT cyclophosphamide-induced cardiotoxicity.
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atrioventricular block,
congestive heart failure (CHF),
hemorrhagic cell necrosis, and fatal myopericarditis have
been reported in patients receiving cyclophosphamide.®’
It is Dbelieved that cyclophosphamide-induced
cardiotoxicity is a dose-dependent phenomenon, and
the clinical manifestations are common following the
application of high doses, ranging between 75 - 200
mg/kg.!*!"" Declined amplitude of the QRS complex,
non-specific T-wave abnormalities, and asymptomatic
reduction of left ventricular ejection fraction (LVEF)
are diagnosed in patients within two weeks after
cyclophosphamide administration.>'?

Noticeably, anti-angiogenic agents like acrolein in
cyclophosphamide structure, are also associated with
several cardiovascular disorders, including hypertension,
LV systolic dysfunction (LVSD), HEF arterial/venous
thromboembolism, arrhythmia, and QT prolongation.'?

As therapeutic approaches, adjusting
cyclophosphamide dose and administration period,
monitoring elimination/excretion, and boosting the
endogenous antioxidant status could be considered to

myocardial infarction (MI),
thromboembolism,
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reduce subsequent complications.

The main aim of this review is to present the current
evidence regarding the challenges in the face of post-
HSCT cardiac sequelae induced by cyclophosphamide
administration to further discuss presumable solutions
maybe through targeting acrolein’s anti-angiogenic
properties in the clinical setting.

Methods
Search strategy
The scientific literature regarding cyclophosphamide-
induced cardiotoxicity was extensively performed using
various databases, including PubMed Central, Embase,
Cochrane Central Register of Controlled Trials, and
preprint servers (i.e., medRxiv) up to June 2024. In
addition, keywords resulting from the Medical Subject
Headings (MeSH) tool were considered as follows:

“Cyclophosphamide” OR “3-(1-0xy-2,2,6,6-tetramethyl-4-
piperidinyl) cyclophosphamide “ OR “ d4-cyclophosphamide
“ OR “ 4-hydroxyperoxycyclophosphamide “ OR “ N(3)-
methyl-4-(propylthio)cyclophosphamide “ OR “Alkylating
agents” OR “ALKYLATING AGENTS “

AND

“ Cardiotoxicity “ OR “ Cardiomyopathy “

AND

“ Hematopoietic Stem Cell Transplantation “ OR “ Bone
Marrow Transplantation “

Inclusion/exclusion criteria

All published articles that were scientifically relevant
to the scope of our research, consisting of randomized
clinical trials (RCTs), observational studies, systematic
reviews and meta-analyses, case reports, and letters to
the editor were included. While, unpublished and non-

English written articles, as exclusion criteria, were not
eligible to be included in this study.

Cyclophosphamide Attributes

Pharmacokinetics and pharmacodynamics properties
Cyclophosphamide, as a prodrug belonging to
the oxazaphosporines group, is metabolized in
the hepatic tissue and converts to two byproducts
including 4-hydroxy Cyclophosphamide (4-HCP) and
aldophosphamide via the activity of various cytochrome
p450 (CYP450) isoenzymes, such as CYPs 3A4, 2B6,
2C19."*"* The further structural modification produces
phosphoramide mustard, an ultimate alkylating agent,
with an anti-neoplastic activity.'*"> Following oral or
parenteral administration, cyclophosphamide undergoes
hepatic biotransformation and further converts into
non-toxic metabolites, such as carboxyphosphamide,
nitrogen mustard, and reactive aldehyde, named acrolein,
which is responsible for promoting cytotoxic effects
on myocardium and endothelial cells (ECs), as well as
hemorrhagic cystitis'® (Figure 1).

In a study designed to evaluate the pharmacokinetics
properties of 5-75 mg/kg of cyclophosphamide in patients
aged less than two years old, a marked difference in
clearancerate, likely due to pharmacogenomics differences,
was found regardless of a substantial disparity in dosing
protocols when compared to the older population."”

Due to the generation of acrolein following
cyclophosphamide administration, the rate of CVD
risk can be monitored by measuring the urine level of
3-hydroxypropyl mercapturic acid (3-HPMA) which is
the acrolein’s major metabolite.' In an in vitro assessment,
cytotoxic effects caused by various cyclophosphamide
metabolites were evaluated in rat cardiomyoblast HOC2
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Figure 1. Pharmacokinetics properties of cyclophosphamide administration.
Abbreviations: 4-HCY, 4-hydroxy cyclophosphamide; CYP450, Cytochrome P450
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cells. Data showed that 4-HCP and acrolein, but not
carboxyethylphosphoramide mustard (CEPM), are
the main key mediators in the production of reactive
oxygen species (ROS) and cardiomyocyte toxicity
following cyclophosphamide treatment.” In the animal
model, the protective impact of aldehyde dehydrogenase
(ALDH), an endogenous cardioprotective enzyme,
in restoring the function of inured cardiomyocytes is
significantly mitigated."

Furthermore,somedrugsexacerbatecyclophosphamide-
related cardiotoxicity through modulation of drug
metabolism. For example, antifungal medications with the
azole group, as potent inhibitors of CYP2B6, interfere with
cyclophosphamide hepatic metabolism and subsequently
lead to higher serum levels of cyclophosphamide, and, in
turn, enhance the possibility of related toxicities.?

At the cellular level, cyclophosphamide can covalently
bind to the proteins or DNAs via alkyl moieties, resulting
in the generation of ROS and subsequent apoptotic cell
death.”® These features increase the possibility of some
hematologic disorders, including anemia, neutropenia,
thrombocytopenia, BM suppression, bladder toxicity,
and gonadal failure.”” As above-mentioned, a high dose
of cyclophosphamide (100 mg/kg <) is also administered
in patients subjected to BM transplantation, while
lower doses are recommended in hematologic and non-
hematologic malignancies."”” However, available evidence
corroborated that the onset of cardiotoxicity symptoms
appears as early as 48 hours after administration of
cyclophosphamide > 150 mg/kg or values more than 1.55
g/m? per day.

Cyclophosphamide-induced cardiotoxicity in
Chemotherapy, Hematopoietic Stem Cell Transplant,
and Non-Cancer treatment setting

In the field of cancer therapy, cyclophosphamide-induced
cardiotoxicity is a significant concern, particularly in
high-dose Excessive oxidative/nitrosative
status and direct damage to the ECs lead to conditions
like cardiomyopathy and heart failure. Post-transplant
cyclophosphamide administration, as a part of the
conditioning regimen, is common in patients with
haploidentical HSCT to prevent possible graft-versus-
host disease (GVHD) and subsequently increase survival
rates. However, this high-dose usage enhances the risk of
cardiotoxicity, manifesting most likely as hemorrhagic
myocarditis or pericarditis.”> Moreover, cardiotoxicity
induced by cyclophosphamide in non-cancer settings,
such as autoimmune diseases, remains a risk, particularly
following prolonged or high-dose treatments.

regimens.

Epidemiological reports

Despite existing limited data to determine cardiotoxicity
prevalence, regarding the long-term cardiotoxicity
occurrence upon the course of chemotherapy, a previous
report estimated a higher rate of HF (15-fold), CVDs

(10-fold), and stroke (9-fold) occurrence, respectively.”
Noteworthy, according to the epidemiological analysis, the
risk of heart failure has been also estimated between 7-28%
followingcyclophosphamidetreatment.” Meanwhile, post-
transplant cyclophosphamide application can predispose
patients to the risk of cardiac events and increase ~1.5 to
3.5-fold mortality rates.”* Also, secondary to post-HSCT
cyclophosphamide administration, the incidence of acute
heart failure and mortality rate has been estimated at 20%
and 8%, respectively.”* Regardless of the multiple factors
involved in cardiotoxicity development, another report
indicated that in patients who receive a combination
therapy of anthracyclines and cyclophosphamide, the
estimated incidence of cardiotoxicity rises to 28%.*

Etiology

Regarding the defined etiologies to develop cardiotoxicity,
exposure to chemicals such as metals, environmental
pollutants, oxidative agents, radiation therapy, and
medications, i.e., some chemotherapy and immune-
suppressive drugs have been documented, resulting in a
higher rate of morbidity and mortality worldwide.?®

Pathophysiology  of
cardiotoxicity
Although  the exact mechanisms related to
cyclophosphamide-induced cardiotoxicity have not been
fully addressed, it has been assumed that the direct injury
of ECs and myocytes can be initiated in response to
excessive production of toxic metabolites such as ROS and
further oxidative/nitrosative endoplasmic reticulum (ER)
stress upon cyclophosphamide administration, generating
prominent histopathological changes. In detail, the direct
injury of microvascular ECs increases the chance of close
exposure of toxic metabolites with cardiomyocytes in
deep layers of the myocardium, contributing to massive
interstitial edema, intravascular thrombus, thickness of
LV wall and interventricular septum, and hemorrhagic
myocarditis-pericarditis.”*** Due to the development of
coronary vasospasm and microvascular emboli following
cyclophosphamide treatment, the occurrence of ischemic
myocardium is mighty.?’

cyclophosphamide-induced

Molecular mechanisms of cyclophosphamide-induced
cardiotoxicity

According to a gear body of scientific data, various
singling pathways are involved in the pathogenicity of
cyclophosphamide metabolites-derived cardiotoxicity.
Cyclophosphamide has the potential to promote various
signaling pathways involved in oxidative/nitrosative stress
and inflammatory responses, leading to redox imbalance
and intracellular damages, such as sarcoplasmic
reticulum dilatation, mitochondrial abnormality, and
nuclear membrane deformation.”** Here, we abridged
the molecular mechanisms involved in cardiomyopathy
progression following cyclophosphamide administration.
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Oxidative stress and inflammatory responses
Cyclophosphamide can provoke an inflammatory
reaction in cardiac tissue and predispose the
cardiomyocytes to further degenerative changes.”® The
inflammatory response following cyclophosphamide
administration can be induced during three main stages:
1) Cyclophosphamide and related metabolites are able
to increase nitrosative/oxidative stress by robust ROS
generation and nitrogen reactive species (RNS) through
the activation of inducible and endothelial nitrogen
synthase (iNOS and eNOS), 2) by activation of Toll-
like receptor 4 (TLR-4) and engaging intracellular p38-
mitogen-activated protein kinase (p38MAPK) and
c-Jun N-terminal kinases (JNK) axis inside the sensitize
cardiomyocytes to cyclophosphamide-associated injuries.
At the same time, cyclophosphamide initially enhances
the levels of peroxynitrite, and inflammatory responses
through p38MAPK and JNK signaling pathway activation.
Furthermore, cyclophosphamide can inhibit the mitogen-
activated protein kinase (MEK1/2) axis with the potential
to cause cardiomyocyte toxicity via mitochondrial injury.
Following the activation of TLR-4, the expression of
various pro-inflammatory mediators such as TNF-a,
interleukins (ILs), especially IL-1p, and cyclooxygenase-2
(COX-2) is increased. In turn, 3) nuclear factor (NF)-«B is
translocated into the nuclei and stimulates the production
of pro-inflammatory cytokines, as well. Along with these
changes, cellular contents of ATP are reduced because of
mitochondrial dysfunction, leading to energy imbalance
further intracellular calcium (Ca?*) accumulation, and
cardiomyocyte injury.?

In a study conducted by Hassanein et al, the therapeutic
impact of lansoprazole against cardiopulmonary injury
induced by oxidative stress and inflammatory response
following  cyclophosphamide  administration — was
evaluated *. Surprisingly, the results of this study unveiled
a protective effect of lansoprazole against elevated redox
status in cardiac tissue through modulating PPARYy,
Nuclear factor erythroid 2-related factor 2 (Nrf2)/ Heme
Oxygenase-1 (HO-1), cytoglobin, PI3K/AKT, and NF-kB
signaling pathways.’!

Cardiomyocyte apoptosis

Accumulating data have shown an apoptotic potential
of cyclophosphamide in preclinical settings.**** To
be specific, the levels of pro-apoptotic factors mainly
belonging to the Bcl-2 family protein, i.e., Bcl-2-associated
X-protein (BAX) and Bcl-2-associated death (BAD)
promoters are increased. Along with these changes, the
release of cytochrome C (Cyt ¢) from mitochondria is
stimulated. Released Cyt ¢ engages apoptotic-activated
protease factor-1 (Apaf-1) to expedite the apoptosome
formation, and activate Caspases 3 and 9. Some data have
also indicated that cyclophosphamide can increase protein
kinase B (PKB) and glycogen synthase kinase-3 beta
(GSK-3p) levels. Of note, the increased PKC activity and

inositol triphosphate (IP3) levels heighten intracellular
ionized calcium (Ca?*).%

Cardiomyocytes’ energy pool modulation

Following cyclophosphamide treatment, the expression of
heartfattyacidbindingprotein (H-FABP)isdownregulated,
inhibiting free fatty acid (FFA) transportation into the
mitochondria. Furthermore, cyclophosphamide affects
the B-oxidation levels in the mitochondrial matrix, which
is mediated by malonyl-CoA increasing, derived from
acetyl CoA, and carnitine palmitoyl transferase-I (CPT-
1) decreasing, ultimately resulting in cytosol FFA and
Ca2 +accumulation.?® Therefore, the energy balance and
ATP production are also disturbed by cyclophosphamide
exposure.

EC dysfunction and cardiomyopathy

Noteworthy, cyclophosphamide administration converts
normal fibroblasts into the abnormal phenotype
named myofibroblasts (myoFBs), which accelerate the
cardiac injury through NADPH oxidase activation and
subsequently increase the pro-inflammatory cytokines,
leukotrienes, and oxidative stress to finally develop
cardiac fibrosis. Moreover, EC dysfunction induced by
cyclophosphamide is mediated by the reduction of nitric
oxide (NO) synthesis and endothelial progenitor cell
production.’ On the other hand, increased expression of
endothelin-1, NF-kB, Platelet factor 4 (PF4), and monocyte
adhesion, in turn, participate in vasoconstriction and
subsequently lead to hypertension incident.”

Left ventricle remodeling and cardiac hypertrophy
Following the redox imbalance and extra intracellular
accumulation of Ca2+, the apoptosis activation
occurs through the caspase/BAX axis. Simultaneously,
P38MAPK/ c- JNK downstream and p53 activation can
be observed following TLR-4 stimulation, accompanied
by the pro-inflammatory cytokines upregulation (TNF-q,
and IL-1pB), which conclusively promotes nucleic anti-
inflammatory ~ Nrf2/ARE  suppression.  Ultimately,
apoptosis and inflammatory response under oxidative/
nitrosative conditions cause cardiac hypertrophy and LV
remodeling.*®

Clinical Outcomes of post-transplant cardiotoxicity
induced by cyclophosphamide

Despite early cardiovascular adverse events (within
the first 100 days) associated with post-transplant
cyclophosphamide administration being rare, available
evidence reported a strong association between
cyclophosphamide administration and clinical outcomes
with a hazard ratio of 2.7; and a 95% confidence interval
of 1.4 to 4.9 (P=0.002). The complications encompass LV
systolic dysfunction, acute pulmonary edema, pericarditis,
arrhythmia, and acute coronary syndrome (ACS)
followed by a lower overall survival rate.* In parallel
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with this study, Ishida et al also elucidated the diastolic
dysfunction (based on E/A ratio) induced by>100 mg/
kg of cyclophosphamide after a conditioning regimen of
allogeneic HSCT (allo-HSCT),” which can subsequently
cause a dose-dependent fatal cardiac failure.* Noteworthy,
despite acceptable screening of cardiopulmonary issues,
high-dose cyclophosphamide administration could
promote fatal cardiotoxicity sequela

To ascertain low-dose cyclophosphamide-induced
arrhythmogenicity at the cellular levels (below 100 mg/
kg), Podgurskaya et al assessed the functional (conduction
properties) and structural changes (cytoskeleton
organization) of human iPSC-derived cardiomyocytes
(hiPSC-CMs) after treatment with cyclophosphamide.’
They found that conduction parameters, including
maximum capture rate (MCR) and conductivity area
in hiPSC-CMs, were significantly diminished via the
disruption of alpha-actinin following cyclophosphamide-
induced arrhythmogenicity (25%+7% and 34+15%,
respectively).’ Finally, they revealed that deviation
from the external stimulus frequency and appearance
of non-conductive areas can be considered
major factors involved in cyclophosphamide-induced
arrhythmogenicity in vivo> Moreover, a previously
report showed some rare cyclophosphamide-induced
cardiomyopathy lethal complications (=200 mg/kg)
among 811 allo-HSCT recipients, including fatal HF
(1.5%), and a high mortality rate (91.6%)." However,
a significant fatal HF was not found in individuals who
received 100 mg/kg post-transplant cyclophosphamide
regimen, underscoring that early diagnosis and close-
up monitoring in the ICU setting would be great aids in
optimizing clinical outcomes.*!

Notably, a recent study also explored the clinical
properties of patients admitted in ICU settings due
to the cardiotoxicity following cyclophosphamide
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administration. The most observed complications
observed among cyclophosphamide recipients were acute
pulmonary edema, cardiac arrest, and cardiac arrhythmia,
respectively.” The most common echocardiography
findings were also related to systolic dysfunction and
pericardial effusion in this subset of patients.** The findings
of this study elegantly revealed that refractory cardiogenic
shock was strongly associated with the mortality rate in
patients with severe forms of cardiotoxicity.** In Table I,
post-transplant cyclophosphamide-induced cardiotoxicity
in various stem cell recipients has been brought.

Regarding the assessment of laboratory parameters
after cyclophosphamide exposure, serum levels of BNP
and endothelin-1 (ET-1) markedly increased in patients
with multiple myeloma undergoing tandem autologous
HSCT.* Although significant clinical manifestations in
favor of HF and myocardial necrosis were not observed,
cardiac LV dysfunction and mitral regurgitation were
approved by echocardiography indices, including wave
prolongation in the pulmonary vein flow, A/a ratio
reduction in flow velocities, and decreased early diastolic
tissue Doppler velocities.*** In Figure 2, the clinical
outcomes of cyclophosphamide-induced cardiotoxicity in
HSCT recipients were schematically illustrated.

Predisposing Factors

Several risk factors such as pre-existing ischemic heart
disease, a history of chest radiation therapy (especially
mediastinum or left chest wall), and simultaneous
treatment with other cardiotoxic agents, e.g.,
anthracyclines, should be considered main risk factors
prior to cyclophosphamide administration in HSCT
recipients.”” Besides, it has been well-established that
high-dose cyclophosphamide, and some predisposing
conditions such as older ages (> 55 years old), metabolic
disorders, e.g., diabetes mellitus, and receiving heavy

‘ Cell Isolation from a health donor |

m &

AT
llowa

Treatment by Allo-SCT/
haplo-HSCT

CP immunosuppressive
effect to minimize GVHD

Figure 2. A schematic presentation of cyclophosphamide-induced cardiotoxicity following HSCT.
Abbreviations: Allo-SCT, allogeneic stem cell transplantation; GVHD, graft-versus human disease; Haplo-HSCT, haploidentical hematopoietic stem cell

transplantation; HF, heart failure; ROS, reactive oxygen species
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Table 1. Studies in the setting of -cyclophosphamide-induced acute cardiotoxicity in cell transplant recipients

Assessment tool and

Study Disease Patients Cell type  Dose of CY Cardiotoxicity related indices Outcomes
MCR and Optical mapping
conductivity method to measure Sl
Podgurskaya Arrhythmo- e aleaszistl, - C, RIOR, appeared to be a potential
A o In vitro hiPSC-CMs  213-852 pM alpha-actinin number of occasions ) )
etal, 2021°  genicity dissuption of re-entry.onla arrhythmogemc agent in the
(cytoskeleton standard linear experimental setting.
structure) obstacle
331 patients, PT- The incidence of ECE**
AML ALL cyclophosphamide was significantly higher
Duléry et al Lymp,hom/a (n=136, 86=males, Low dose:50 mg/ in PT-cyclophosphamide
202124 ! MM MDS, 50 females) and non-  Allo-HSCT kg/day ECE** Transthoracic Echo patients (P<0.001) with
MPI\,I ! PT-Cy (n=195, 114 lower overall survival (HR:
males, 81 females), 2.7;,95% Cl: 1.4 to 4.9;
15 <years old P=0.002)
High dose: 120 (60 Due to fatal
LM, including mg for two days), cyclophosphamide-induced
Ishida et al SAA, MM, ‘ A combingtion Fa‘ta[ HF, 2D echo, cardi(?toxicity whic_h is
2015% " Lymphoma, 811 patients Allo-HSCT  therapy with Diastolic E-wave, A-wave, E/A  associated with a high
AML, CML, lymphoid dysfunction index, LVEF mortality rate, it must be
MDS irradiation and/or considered early after the
busulfan administration of the drug
High dose of Echo, Following tandem
30 patients, Cy (133.33 mg/ Mitral Conventional, and autologous HSCT
Zver et al, (19 males and 11 kg)+ MEL (6.66 mg/ regurgitation, Doppler to measure Lo .
MM ASCT . : ) cardiotoxic effects with no
2008% females), kg) Myeloablative  Diastolic LV E , a-wave, and A/a clinical signs of HF was
40-70 years old dose* 2x) for 2 dysfunction ratio and inflow detected
weeks velocities '
High dose: Total
17 patients izn(ig T28/7k ;‘; S;’L?d Acceptable survival
Ma et al, SAA (7 =males, Haplo- four da.ys before Grade Il ) outcomes and reduced
20234 10=females), HSCT incidence of GVHD were

<40 years old
after HSCT)

HSCT, and 14.5
mg/kg for two days

achieved

* High-dose chemotherapy to destroy cancer cells in the bone marrow.

** ECE is defined as LVSD, decreased LVEF, acute pulmonary edema, arrhythmia, pericarditis, or ACS during the first 100 days.

Abbreviations: 2-dimensional echo, 2D Echo; ACS, acute coronary syndrome; Allo-SCT, allogeneic stem cell transplantation; ASCT, autologous stem cell
transplantation; Acute lymphoblastic leukemia; AML, Acute myeloid leukemia; Auto-HCT, autologous hematopoietic stem cell transplantation; BNP, Brain
natriuretic peptide; Cl, confidence interval; CV, conduction velocity; ECE, Early Cardiac Events; Eco, Echocardiography; ET-1, Endothelin 1; LVEF, Left Ventricular
Ejection fraction; LVSD, left ventricular systolic dysfunction; haplo-HSCT, Haploidentical hematopoietic stem cell transplantation; HF, heart failure; HiPSC-CMs,
human induced pluripotent stem cell-derived Cardiomyocytes; HSCT, haploidentical hematopoietic stem cell transplantation; HR, hazard ratio; LM, Lymphoid
malignancy; MCR, maximum capture rate; MDS, Myelodysplastic syndrome; MEL, Melphalan; MM, Multiple Myeloma; MPN, Myeloproliferative neoplasm; PT-
Cy, Post-transplant cyclophosphamide; SAA, Severe Aplastic Anemia; Tnl, Troponin |

pre-treatment regimens can increase the likelihood of
cardiotoxicity.® According to a recent study conducted by
LeMaistre et al, it has been also found that the occurrence
of severe LVEF reduction in patients who received post-
transplant cyclophosphamide is more frequent in those
with a history of systolic dysfunction without worsening
survival outcomes.*

Therapeutic Strategies to Manage Cyclophosphamide-
Induced Cardiotoxicity

Non-fatal cardiomyopathy is reversible and the symptoms
can be managed by prescribing some antihypertensive
medications such as beta-blockers, diuretics, angiotensin-
converting enzyme inhibitors (ACEIs), angiotensin II
receptor blockers (ARBs), vasodilators, and inotrope
drugs followed by appropriate hemodynamic support and
close monitoring.® Recently, a cardioprotective effect of
simvastatin against cyclophosphamide-induced toxicity

has been also evaluated. The in vivo study results showed
that simvastatin can exert appreciated anti-inflammatory
and anti-apoptotic effects via NLRP3-inflammasome/
caspase 1/IL1{ pathway modulation.” In this regard, eNOS
also plays a crucial role in alleviating cyclophosphamide-
induced cardiomyopathy mediated by simvastatin.*’

An experimental study also indicated the ALDH2 crucial
role in reducing the sensitivity against cyclophosphamide-
induced acute cardiotoxicity, and cardiomyocyte necrosis,
as well as accumulation of ROS, acrolein, and other toxic
aldehyde metabolites.” Besides, the therapeutic potential of
numerous natural products with potent anti-oxidant effects
was also widely investigated in preclinical settings.*

Prevention of cyclophosphamide-induced Cardiotoxicity
Considering an alternative therapeutic protocol would
be the utmost strategy to prevent the occurrence of fatal
cardiotoxicity in the presence of the above-mentioned risk
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factors. However, early diagnosis of cyclophosphamide-
induced cardiotoxicity plays a crucial role in preventing
worsening outcomes.

BuCyFlu conditioning regime consisting of busulfan
(Bu, 3.2 mg/kg), low-dose cyclophosphamide (60-100
mg/kg), fludarabine (150 mg/m2), and rabbit anti-
thymocyte globulin (ATG) (10 mg/kg) has been utilized
after haplo-HSCT to control cardiac complications in
patients with severe aplastic anemia.”” This regimen can
contribute to restricting cyclophosphamide-induced
severe cardiomyopathy (2.17% vs. 12.80%, P<0.05) with
favorable survival and engraftment outcomes when
compared to high-dose cyclophosphamide counterparts.*
In this line, a recent prospective clinical trial also reported
that the order of cyclophosphamide and busulphan-based
treatment before receiving HSCT substantially minimized
organ toxicity (CyBu superior to BuCy).*

In patients with severe aplasticanemia (SAA) undergoing
haplo-HSCT, modified granulocyte colony-stimulating
factor/anti-thymocyte  globulin-based  protocol  of
cyclophosphamide treatment can be also used to reduce
the unfavorable cardiac events along with the increased
engraftment efficiency.** A large number of SAA patients
with novel regimens, i.e., splitting of cyclophosphamide
high dose (200 mg/kg) into separate doses (42.75 and
14.5 mg/ kg), exhibited acute GVHD grades I-II but not
III-IV grades with non-fatal cardiotoxicity (grade II) and
prolong survival rate during follow-up.**

Cardiotoxicity management by targeting acrolein-
induced anti-angiogenic effect

Angiogenesis is defined as a pathophysiological process
to form new capillaries out of pre-existing vasculature.>>**
In this regard, out of various identified factors, vascular
endothelial growth factors (VEGFs) play a major role
in driving neovascularization.”® In addition, numerous
modulators such as nitric oxide (NO), HO-1, ROS, and
other inflammatory molecules also participate in deriving
vasculogenesis under pathological conditions.®® In the
case of cross-link between impaired angiogenesis and
cardiotoxicity development, a recent study emphasized
a direct association between selected VEGF-receptor
tyrosine kinase inhibitors (VEGF-TKI) and cardiotoxicity
induction in patients with malignancy.”

Pro-angiogenic target therapy is being recently
employed as a cutting-edge therapeutic approach in
the field of ischemic CVD. In this sense, some anti-
angiogenic agents with specific targets, causing aberrant
neovascularization and increasing vascular permeability
have been introduced.”® For instance, a spermine oxidase
inhibitor, named MDL 72527, serves a potential anti-
angiogenic effect through acrolein-conjugated protein
reduction and P38/ERK1/2/STAT3 signaling pathway
downregulation.™

However, some angiogenic inhibitors, such as
monoclonal antibodies (mAbs) and TKIs, are also

associated with cardiovascular adverse events, including
HE MI, stroke, and venous thromboembolism,**!* which
further highlight the substantial role of acrolein, as a toxic
byproduct, in promoting organ damage.

In addition to the DNA alkylation mediated by
phosphoramide mustard in tumor cells, cyclophosphamide
also exerts a double tumor therapy effect through
unsaturated aldehyde, acrolein, most likely during
thrombospondin-1 (TSP-1) upregulation, an endogenous
angiogenesis inhibitor, to further restrict tumor cells
proliferation and migration.® A previous study conducted
on smokers has confirmed that acrolein is directly
associated with increased CVD risk via the promotion of
platelet aggregation and reduction of circulating early and
late angiogenic cells (ACs)."®

Beyond the anti-angiogenic property, it has been
well-established that acrolein can also appear to be
an atherosclerotic factor due to the increase of the
inflammatory responses via cyclooxygenase-2 (COX-
2) upregulation and prostaglandins (PGs) production
through PKC- p38MAPK signaling pathway in vitro.”’
Hence, some proposed anti-inflammatory therapy with
natural products, such as curcumin, would be a promising
adjuvant therapy to improve vascular performance and
subsequent alleviation of cyclophosphamide-induced
cardiotoxicity." Another option against acrolein-induced
cytotoxicity is referred to the acrolein trapping with active
flavonols, possessing abundant phenolic -OH groups in
structural B-ring (not A- and C-ring), especially myricetin,
to scavenge the toxic acrolein.® In better words, myricetin
by acrolein trapping results in non-toxic acrolein adduct
formation (mono- and di-ACR-myricetin adducts) in a
dose-dependent manner.®* In Figure 3, the negative effects
of acrolein on cardiac tissue following cyclophosphamide
administration were described.

Discussion

In this review, we primarily discussed the pharmacologic
features of cyclophosphamide and the pathogenesis
of possible cardiotoxicity. Next, potential therapeutic
approaches such as targeting of anti-angiogenic effect of
acrolein in HSCT recipients were proposed for upcoming
research.

To the best of our knowledge, cardiotoxicity refers to the
early and late incidence of either cardiac electrophysiology
dysfunction or myocardia weakness. According to the
Cardiac Review and Evaluation Committee declaration,
the cardiotoxicity definition mainly refers to either LVEF
reduction between 5-55% with CHF symptoms or LVEF
reduction between 10-55% without clinical symptoms,”*
which can influence the optimal impact of current anti-
cancer or immunosuppressive therapies used short- or
long-term. It is worth noting that beyond the undesirable
cardiotoxicity, patients undergoing cyclophosphamide
therapy are also at higher risk of other adverse effects
like gonadal toxicity, bone marrow suppression, and even
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Figure 3. Cyclophophamide-induced cardiotoxicity. A. involved mechanism of action following: (1) apoptosis, (2) activation of TLR-4-MAPK-JNK signaling
pathway and subsequent (3) energy imbalance and mitochondrial damage, (4) increased ROS generation and (5) activation of inflammatory response mainly
mediated by TNF-q, IL-6, and COX-2. B. Cardiotoxicity derived by Acrolein anti-angiogenic effect.

Abbreviations: APAF-1, Apoptotic Protease Activating Factor 1; ATP, Adenosine triphosphate; BAD, BCL2 associated agonist of cell death; BAX, Bcl-2-associated
X-protein; Caspase, cysteine-dependent, aspartate-specific peptidase; CoA, coenzyme A; COX-2, cyclooxygenase-2; CPT-1, Carnitine palmitoyltransferase 1; EF,
ejection fraction; FFA, free fatty acid; HF, heart failure; JNK, c-Jun N-terminal kinases; IL-6, interleukine-6; LA, left atrial; LV, left ventricular, LVSD, left ventricular
systolic dysfunction; MAPK, mitogen-activated protein kinase; RA, right atrial; RV, right ventricular; ROS, reactive oxygen species; RNS, reactive nitrogen species;

TLR-4, toll-like receptor-4; TNF-a, Tumor necrosis factor-alpha

secondary malignancy due to cumulative dose effects.®

Under allogeneic stem cell transplantation, some
therapeutic strategies should be applied to reduce
the activation of all-reactive immune cells such as
immunocompromised drugs. In this respect, post-
transplant cyclophosphamide therapy has been defined
as a standard of care, particularly in individuals receiving
haploidentical HSCT (haplo-HSCT) with the purpose
of GVHD reduction risk.®* It is also common in human
leukocyte antigen (HLA)-identical sibling, matched-
unrelated, and mismatched unrelated donor HSCT.%>¢” In
patients undergoing HSCT, cyclophosphamide is generally
administered at a dose of 100 mg/kg and above, while in
patients with hematological malignancies or solid tumors,
these values are in the range of 80-200 mg/kg.” However,
the precise dose and administration period can be
varied according to the treatment type, and concomitant
therapeutic protocols.'

Following cyclophosphamide administration, it has
been well-documented that cardiomyocyte death, which
emerged as the leading cause of long-term irreversible
cardiac damage, is mainly mediated by vasculature
dysfunction and thromboembolic ischemic events.
However, alkylating agents may also cause type II or
reversible cardiotoxicity without inducing cell death,
which is associated with a lower rate of cardiomyocyte
impairment and HF incidents. Mechanistically, it has

been also assumed that type II cardiotoxicity may occur
secondary to either the deregulation of cardiomyocyte-
intrinsic mechanisms or extracellular factors, especially
paracrine factors to modify cardiomyocyte function. Due
to the limited potential of cardiomyocyte regeneration in
the adult population on the one hand, and the broad array
of biological mechanisms affected by cyclophosphamide
and related toxic metabolites, on the other hand, the
development of novel strategies aiming at improving
cardiomyocyte survival rate and blood circulation highly
encouraged, which is able to reduce drug-induced
cardiomyocyte necrosis and subsequent ischemic-related
permanent damage.’

Among toxic metabolites of cyclophosphamide,
acrolein is accused of being the main toxic agent, which is
responsible for cardiomyocyte damage. Several chemical
and herbal compounds have been investigated and
introduced to reduce or prevent cardiac complications
caused by cyclophosphamide mainly by inhibiting
oxidative/nitrosative stress and inflammatory responses.
However, the anti-angiogenic effects of toxic metabolites
of cyclophosphamide, such as acrolein, have largely
remained to be determined. Given the negative effects
caused by the anti-angiogenic properties of acrolein, in
this study, the targeted therapy against post-transplant
cardiomyopathy has been also emphasized. In this regard,
the application of cardiomyocyte survival factors for
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regenerative strategies and endogenous cardiomyocyte
proliferation, as well as angiogenic stimuli, e.g., angiogenic
factors, in the face of acroleins anti-angiogenic effect
would be more appreciated.’

Conclusion and Future Prospective

To date, the management of cyclophosphamide-induced
cardiotoxicity appears as a significant challenge in
clinical settings. Although the acrolein-related anti-
angiogenic feature is considered a positive aspect in favor
of chemotherapy, targeting acrolein’s anti-angiogenic
effect could be regarded as a great promising approach to
preserve cardiac function and improve clinical outcomes in
the field of transplant medicine. In this respect, upcoming
research is required to explore various angiogenesis
stimulants using novel drug delivery systems, e.g.,
exosome-base therapy to inhibit acrolein-related negative
effects without influencing other physiological processes.
Additionally, long-term pre-clinical and clinical studies
are requested to assess the safety and efficacy of these
pharmacotherapies in the post-HSCT setting. Together,
the prospect of stimulating angiogenesis and concurrent
cardiac repair through targeted therapies opens up new
avenues for improving the quality of life for transplant
recipients.

Despite the clinical importance of toxicity induced by
alkylating agents, in comparison with anthracycline drug
class, e.g., doxorubicin, there is limited data to address
novel therapeutic options for better management of this
health issue. Regarding the molecular mechanisms, there
is also limited data about nrf2/ARE-related signaling
pathways to discover further therapeutic targets against
induced cytotoxicity.
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